New 19 Ne resonance observed using an exotic 18 F beam

D.W. Bardayan^{1,a}, J.C. Blackmon¹, J. Gómez del Campo¹, R.L. Kozub², J.F. Liang¹, Z. Ma³, D. Shapira¹, L. Sahin^{4,5}, and M.S. Smith¹

¹ Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
² Physics Department, Tennessee Technological University, Coolegilla TN 38505

² Physics Department, Tennessee Technological University, Cookeville, TN 38505, USA 3 Department of Physics and Astronomy University of Tennessee Knowille, TN 37006

³ Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
⁴ Department of Physics and Astronomy, University of North Carolina, Chand Hill, NG 3750

⁴ Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 37599, USA

⁵ Department of Physics, Dumlupinar University, Kutahya, 43100, Turkey

Received: 22 November 2004 / Published online: 13 April 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. The rates of the ¹⁸ $F(p,\alpha)^{15}$ O and ¹⁸ $F(p,\gamma)^{19}$ Ne reactions in astrophysical environments depend on the properties of ¹⁹Ne levels above the ¹⁸F + p threshold. There are at least 8 levels in the mirror nucleus ¹⁹F for which analogs have not been observed in ¹⁹Ne in the excitation energy range $E_x = 6.4$ –7.6 MeV. We have made a search for these levels by measuring the ${}^{1}H({}^{18}F, p){}^{18}F$ excitation function over the energy range $E_{\text{c.m.}} = 0.3$ –1.3 MeV. We have identified and measured the properties of a newly observed level at $E_x = 7.420 \pm 0.014 \,\text{MeV}$, which is most likely the mirror to the $J^{\pi} = 7/2^{+\,19}$ F level at 7.56 MeV. This new level is found to increase the calculated $^{18}F(p,\alpha)^{15}O$ reaction rate by 16%, 63%, and 106% at $T=1,2$, and 3 GK, respectively.

PACS. 27.20.+n $6 \leq A \leq 19 - 25.40$.Cm Elastic proton scattering – 25.60.-t Reactions induced by unstable nuclei – 26.30.+k Nucleosynthesis in novae, supernovae, and other explosive environments

The proton-induced reactions on 18 F are of astrophysical interest for a variety of reasons. The amount of the long-lived radioisotope 18 F [\[1\]](#page-1-0) produced in novae depends directly on the rates of the 18 F $(p,\alpha){}^{15}$ O and 18 F $(p,\gamma){}^{19}$ Ne reactions [\[2\]](#page-1-1). The synthesis of other isotopes $(e.g., {}^{16}O,)$ 18 O, and 19 F) also show a dramatic sensitivity to the rates of these reactions [\[3\]](#page-1-2). In higher-temperature environments such as X-ray bursts, there may be a transition to heavy element production via the reaction sequence $^{18}F(p,\gamma)^{19}\mathrm{Ne}(p,\gamma)^{20}\mathrm{Na}(p,\gamma)^{21}\mathrm{Mg}\ldots$ [\[4\]](#page-1-3). Whether there is a significant flow through this reaction sequence depends sensitively on the competition between the $^{18}F(p,\gamma)^{19}$ Ne and $^{18}F(p,\alpha)^{15}$ O reactions, and thus we must know their relative rates in these high-temperature astrophysical environments.

To accurately calculate the rates of the ${}^{18}F(p,\alpha){}^{15}O$ and ${}^{18}F(p,\gamma){}^{19}Ne$ reactions, we must understand the level structure of ¹⁹Ne above the proton threshold at $E_x =$ 6.411 MeV. Despite numerous studies of 19 Ne (see ref. [\[5\]](#page-1-4) and references therein), there still exist at least 8 levels in the mirror nucleus, 19 F, for which analogs have not been observed in ¹⁹Ne in the excitation energy range $E_x = 6.4-$ 7.6 MeV. These unobserved levels may significantly enhance the $^{18}F + p$ reaction rates, and thus their properties must be determined.

We have searched for these missing levels in 19 Ne by measuring the ${}^{1}H({}^{18}F, p){}^{18}F$ excitation function over the energy range $E_{\text{c.m.}} \simeq 0.3{\text -}1.3 \,\text{MeV}$. A 24 MeV ¹⁸F beam was accelerated at the ORNL Holifield Radioactive Ion Beam Facility (HRIBF) and stripped to charge state $q = 9$ ⁺ before the energy-analyzing magnet to reject an unwanted 18 O contamination in the beam. The 18 F beam was then used to bombard a thick $2.8 \,\mathrm{mg/cm^2}$ polypropylene CH² target in which the beam was stopped, and scattered protons from the ${}^{1}H({}^{18}F, p){}^{18}F$ reaction were detected at $\theta_{\rm lab} = 8^{\circ} - 16^{\circ}$ by a double-sided silicon-strip detector (DSSD). Because the scattered protons lose relatively little energy in the target, measurements of the proton's energy and angle of scatter are sufficient to determine the center-of-mass energy at which the reaction occurred [\[6\]](#page-1-5). A measurement of the scattered proton energy spectrum at a fixed angle can thus be used to extract the excitation function for the ${}^{1}H({}^{18}F, p){}^{18}F$ reaction over a wide range of center-of-mass energies.

Data were collected in event mode for approximately 62 hours. Events identified as protons from their time-of-flight and energy [\[7\]](#page-1-6) were sorted in two-degree angular bins, corrected for energy loss in the target, and are plotted in fig. [1.](#page-1-7) The number of counts per channel generally fell with increasing $E_{\text{c.m.}}$, which was simply a manifestation of the Rutherford scattering cross-section. There were, however, significant deviations from Rutherford

^a Conference presenter:

e-mail: bardayan@mail.phy.ornl.gov

Fig. 1. The proton energy spectra from the ${}^{1}H({}^{18}F, p){}^{18}F$ reaction are shown as a function of angle. The solid line shows the best fit assuming a $\frac{7}{2}$ ⁺ resonance at $E_{\text{c.m.}} \simeq 1.01 \text{ MeV}$. The dashed line in the 8° spectrum shows the excitation function expected using the resonance parameters from ref. [\[5\]](#page-1-4).

scattering at $E_{c.m.} = 0.665 \,\text{MeV}$ and 1.01 MeV where the cross-section abruptly rises and falls, respectively. The increase in cross-section at $E_{\text{c.m.}} = 665 \,\text{keV}$ arises from the previously observed $J^{\pi} = \frac{3}{2}$ $+$ scattering resonance [\[8\]](#page-1-8). Since the properties of this resonance are well known, it provided a convenient internal energy calibration. The sharp fall in cross-section near $E_{\text{c.m.}} = 1.01 \text{ MeV}$ could not be explained using previously known levels and indicated the presence of a newly observed 19 Ne resonance.

Excitation functions were calculated with the R-Matrix code MULTI [\[9\]](#page-1-9). A good fit to the data was obtained (see fig. [1\)](#page-1-7) using just three resonances: the $J^{\pi} = \frac{3}{2}$ $+$ resonance at $E_{\text{c.m.}} = 0.665 \text{ MeV}$, a newly observed $J^{\pi} = \frac{7}{2}$ $^+$ or $\frac{5}{2}$ ⁺ resonance near $E_{\text{c.m.}} = 1.01 \text{ MeV}$, and a broad s-wave resonance higher in energy. A simultaneous fit of the data sets obtained at each angle was performed by varying the properties of the resonance near $E_{\text{c.m.}} = 1.01 \text{ MeV}$, and leaving the properties of the known $E_{\text{c.m.}} = 0.665 \,\text{MeV}$ resonance fixed at the values measured in ref. [\[8\]](#page-1-8). The best fit $(\chi^2_{\nu} = 1.45)$ was obtained for a $J^{\pi} = \frac{7}{2}$ + resonance at $E_{\text{c.m.}} = 1.009 \pm 0.014 \text{ MeV}$ $(E_x = 7.420 \pm 0.014 \,\text{MeV})$ with $\Gamma_p = 27 \pm 4 \,\text{keV}$ and Γ_{α} = 71 ± 11 keV. A fit nearly as good (χ^2_{ν} = 1.52) was obtained for a $J^{\pi} = \frac{5}{2}$ $+$ resonance at the same energy with $\Gamma_p = 31 \pm 4 \,\text{keV}$ and $\Gamma_\alpha = 71 \pm 11 \,\text{keV}$. A $J^{\pi} = \frac{5}{2}$ + assignment, however, appears to be rather unlikely from a comparison with the mirror nucleus, ¹⁹F. The only known candidates for an analog level are the $J^{\pi} = \frac{5}{2}^{+19}$ F state at $E_x = 7.54$ MeV and the $J^{\pi} = \frac{7}{2}^{+19}$ F state at 7.56 MeV [\[10\]](#page-1-10). The 7.54 MeV $\frac{5}{2}$ + ¹⁹F level is narrow $(\Gamma = 0.16 \,\text{keV})$ and is thus not a good candidate for the mirror to our newly observed level with $\Gamma \simeq 98 \,\text{keV}$. On the other hand, the $\frac{7}{2}$ ⁺ ¹⁹F level is rather broad $(\Gamma = 85 \,\text{keV}$ [\[11\]](#page-1-11)) and has no other

obvious analog in 19 Ne. The newly observed 19 Ne level at $E_x = 7.420 \pm 0.014 \,\text{MeV}$ is, therefore, most likely the mirror to the $J^{\pi} = \frac{7}{2}^{+19}$ F level at 7.56 MeV.

In addition to the best fit calculation, we also show in fig. [1](#page-1-7) the calculated excitation function using the 19 Ne resonance parameters from ref. [\[5\]](#page-1-4). That calculation includes contributions from 13 resonances, most of which produce only minor perturbations to the excitation function. The one glaring discrepancy is for the expected contribution from the $\frac{5}{2}$ ⁺ level at $E_{c.m.} = 1.09 \,\text{MeV}$ $(E_x = 7.500 \,\text{MeV})$. This level was observed in ref. [\[10\]](#page-1-10) to have $\Gamma_p/\Gamma_\alpha \simeq 5.25$ and a 1σ upper limit of $\Gamma < 32 \,\text{keV}$. A width of $16 \,\text{keV}$ was adopted for this level in ref. [\[5\]](#page-1-4), but clearly (as seen in fig. [1\)](#page-1-7) the actual width is much smaller. This is not really surprising considering the width of the proposed analog level is only 0.16 keV [\[12\]](#page-1-12). Using the ratio of the proton- to the alpha-partial width measured in ref. [\[10\]](#page-1-10), we can set an upper limit on the proton width of $\Gamma_p(7.500 \,\text{MeV}) < 2.5 \,\text{keV}$ at the 90% confidence level.

We have made updated calculations of the $^{18}F + p$ reaction rates in ref. [\[7\]](#page-1-6). We find that the addition of the newly observed $7/2^+$ resonance increases the calculated ¹⁸F(p, α)¹⁵O rate by 16%, 63%, and 106% at $T = 1, 2$, and 3 GK, respectively. The calculated ${}^{18}F(p,\gamma){}^{19}Ne$ reaction rate (using γ widths from ref. [\[5\]](#page-1-4)) is increased by about \sim 7% over the 1–3 GK range. At temperatures below this, the rates are dominated by resonances at $E_{\text{c.m.}} = 330$ and 665 keV [\[5\]](#page-1-4).

This research was sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725. This work was also supported in part by the U.S. DOE under Contract No. DE-FG02- 96ER40955 with Tennessee Technological University and Contract No. DE-FG02-97ER41041 with the University of North Carolina at Chapel Hill.

References

- 1. M. Hernanz, J. Gómez-Gomar, J. José, New Astron. Rev. 46, 559 (2002).
- 2. A. Coc, M. Hernanz, J. José, J.-P. Thibaud, Astron. Astrophys. 357, 561 (2000).
- 3. C. Iliadis, A. Champagne, J. José, S. Starrfield, P. Tupper, Astrophys. J., Suppl. Ser. 142, 105 (2002).
- 4. A.E. Champagne, M. Wiescher, Annu. Rev. Nucl. Part. Sci. 42, 39 (1992).
- 5. N.-C. Shu, D.W. Bardayan, J.C. Blackmon, Y.-S. Chen, R.L. Kozub, P.D. Parker, M.S. Smith, Chin. Phys. Lett. 20, 1470 (2003).
- 6. A. Galindo-Uribarri et al., Nucl. Instrum. Methods Phys. Res. B 172, 647 (2000).
- 7. D.W. Bardayan et al., Phys. Rev. C 70, 015804 (2004).
- 8. D.W. Bardayan et al., Phys. Rev. C 63, 065802 (2001).
- 9. R.O. Nelson, E.G. Bilpuch, G.E. Mitchell, Nucl. Instrum. Methods Phys. Res. A 236, 128 (1985).
- 10. S. Utku et al., Phys. Rev. C 57 2731 (1998); 58, 1354(E) (1998).
- 11. T. Mo, H.R. Weller, Nucl. Phys. A 198, 153 (1972).
- 12. D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 595, 1 (1995).