New ¹⁹Ne resonance observed using an exotic ¹⁸F beam

D.W. Bardayan^{1,a}, J.C. Blackmon¹, J. Gómez del Campo¹, R.L. Kozub², J.F. Liang¹, Z. Ma³, D. Shapira¹, L. Sahin^{4,5}, and M.S. Smith¹

¹ Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

² Physics Department, Tennessee Technological University, Cookeville, TN 38505, USA

³ Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

⁴ Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 37599, USA

⁵ Department of Physics, Dumlupinar University, Kutahya, 43100, Turkey

Received: 22 November 2004 / Published online: 13 April 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. The rates of the ¹⁸F(p, α)¹⁵O and ¹⁸F(p, γ)¹⁹Ne reactions in astrophysical environments depend on the properties of ¹⁹Ne levels above the ¹⁸F + p threshold. There are at least 8 levels in the mirror nucleus ¹⁹F for which analogs have not been observed in ¹⁹Ne in the excitation energy range $E_x = 6.4$ –7.6 MeV. We have made a search for these levels by measuring the ¹H(¹⁸F, p)¹⁸F excitation function over the energy range $E_{c.m.} = 0.3$ –1.3 MeV. We have identified and measured the properties of a newly observed level at $E_x = 7.420 \pm 0.014$ MeV, which is most likely the mirror to the $J^{\pi} = 7/2^{+19}$ F level at 7.56 MeV. This new level is found to increase the calculated ¹⁸F(p, α)¹⁵O reaction rate by 16%, 63%, and 106% at T = 1, 2, and 3 GK, respectively.

PACS. 27.20.+n $6 \le A \le 19 - 25.40$.Cm Elastic proton scattering – 25.60.-t Reactions induced by unstable nuclei – 26.30.+k Nucleosynthesis in novae, supernovae, and other explosive environments

The proton-induced reactions on ¹⁸F are of astrophysical interest for a variety of reasons. The amount of the long-lived radioisotope ¹⁸F [1] produced in novae depends directly on the rates of the ¹⁸F(p, α)¹⁵O and ¹⁸F(p, γ)¹⁹Ne reactions [2]. The synthesis of other isotopes (*e.g.*, ¹⁶O, ¹⁸O, and ¹⁹F) also show a dramatic sensitivity to the rates of these reactions [3]. In higher-temperature environments such as X-ray bursts, there may be a transition to heavy element production via the reaction sequence ¹⁸F(p, γ)¹⁹Ne(p, γ)²⁰Na(p, γ)²¹Mg ... [4]. Whether there is a significant flow through this reaction sequence depends sensitively on the competition between the ¹⁸F(p, γ)¹⁹Ne and ¹⁸F(p, α)¹⁵O reactions, and thus we must know their relative rates in these high-temperature astrophysical environments.

To accurately calculate the rates of the ${}^{18}\mathrm{F}(p,\alpha){}^{15}\mathrm{O}$ and ${}^{18}\mathrm{F}(p,\gamma){}^{19}\mathrm{Ne}$ reactions, we must understand the level structure of ${}^{19}\mathrm{Ne}$ above the proton threshold at $E_x =$ 6.411 MeV. Despite numerous studies of ${}^{19}\mathrm{Ne}$ (see ref. [5] and references therein), there still exist at least 8 levels in the mirror nucleus, ${}^{19}\mathrm{F}$, for which analogs have not been observed in ${}^{19}\mathrm{Ne}$ in the excitation energy range $E_x = 6.4$ – 7.6 MeV. These unobserved levels may significantly enhance the ${}^{18}\mathrm{F} + p$ reaction rates, and thus their properties must be determined.

We have searched for these missing levels in ¹⁹Ne by measuring the ${}^{1}\text{H}({}^{18}\text{F}, p){}^{18}\text{F}$ excitation function over the energy range $E_{\text{c.m.}} \simeq 0.3-1.3 \,\text{MeV}$. A 24 MeV ${}^{18}\text{F}$ beam was accelerated at the ORNL Holifield Radioactive Ion Beam Facility (HRIBF) and stripped to charge state $q = 9^+$ before the energy-analyzing magnet to reject an unwanted ¹⁸O contamination in the beam. The ¹⁸F beam was then used to bombard a thick $2.8 \,\mathrm{mg/cm^2}$ polypropylene CH_2 target in which the beam was stopped, and scattered protons from the ${}^{1}H({}^{18}F, p){}^{18}F$ reaction were detected at $\theta_{lab} = 8^{\circ} - 16^{\circ}$ by a double-sided silicon-strip detector (DSSD). Because the scattered protons lose relatively little energy in the target, measurements of the proton's energy and angle of scatter are sufficient to determine the center-of-mass energy at which the reaction occurred [6]. A measurement of the scattered proton energy spectrum at a fixed angle can thus be used to extract the excitation function for the ${}^{1}\mathrm{H}({}^{18}\mathrm{F},p){}^{18}\mathrm{F}$ reaction over a wide range of center-of-mass energies.

Data were collected in event mode for approximately 62 hours. Events identified as protons from their time-of-flight and energy [7] were sorted in two-degree angular bins, corrected for energy loss in the target, and are plotted in fig. 1. The number of counts per channel generally fell with increasing $E_{\rm c.m.}$, which was simply a manifestation of the Rutherford scattering cross-section. There were, however, significant deviations from Rutherford

^a Conference presenter;

e-mail: bardayan@mail.phy.ornl.gov

Fig. 1. The proton energy spectra from the ${}^{1}\text{H}({}^{18}\text{F}, p){}^{18}\text{F}$ reaction are shown as a function of angle. The solid line shows the best fit assuming a $\frac{7}{2}^{+}$ resonance at $E_{c.m.} \simeq 1.01 \text{ MeV}$. The dashed line in the 8° spectrum shows the excitation function expected using the resonance parameters from ref. [5].

scattering at $E_{\rm c.m.} = 0.665$ MeV and 1.01 MeV where the cross-section abruptly rises and falls, respectively. The increase in cross-section at $E_{\rm c.m.} = 665$ keV arises from the previously observed $J^{\pi} = \frac{3}{2}^+$ scattering resonance [8]. Since the properties of this resonance are well known, it provided a convenient internal energy calibration. The sharp fall in cross-section near $E_{\rm c.m.} = 1.01$ MeV could not be explained using previously known levels and indicated the presence of a newly observed ¹⁹Ne resonance.

Excitation functions were calculated with the R-Matrix code MULTI [9]. A good fit to the data was obtained (see fig. 1) using just three resonances: the $J^{\pi} = \frac{3}{2}^+$ resonance at $E_{\rm c.m.} = 0.665$ MeV, a newly observed $J^{\pi} = \frac{7}{2}^+$ or $\frac{5}{2}^+$ resonance near $E_{\rm c.m.} = 1.01$ MeV, and a broad s-wave resonance higher in energy. A simultaneous fit of the data sets obtained at each angle was performed by varying the properties of the resonance near $E_{\rm c.m.} = 1.01$ MeV, and leaving the properties of the known $E_{\rm c.m.} = 0.665$ MeV resonance fixed at the values measured in ref. [8]. The best fit ($\chi^2_{\nu} = 1.45$) was obtained for a $J^{\pi} = \frac{7}{2}^+$ resonance at $E_{\rm c.m.} = 1.009 \pm 0.014$ MeV ($E_x = 7.420 \pm 0.014$ MeV) with $\Gamma_p = 27 \pm 4$ keV and $\Gamma_{\alpha} = 71 \pm 11$ keV. A fit nearly as good ($\chi^2_{\nu} = 1.52$) was obtained for a $J^{\pi} = \frac{5}{2}^+$ resonance at the same energy with $\Gamma_p = 31 \pm 4$ keV and $\Gamma_{\alpha} = 71 \pm 11$ keV. A $J^{\pi} = \frac{5}{2}^+$ assignment, however, appears to be rather unlikely from a comparison with the mirror nucleus, ¹⁹F. The only known candidates for an analog level are the $J^{\pi} = \frac{5}{2}^{+} 1^9$ F state at 7.56 MeV [10]. The 7.54 MeV $\frac{5}{2}^+$ ¹⁹F level is narrow ($\Gamma = 0.16$ keV) and is thus not a good candidate for the mirror to our newly observed level with $\Gamma \simeq 98$ keV. On the other hand, the $\frac{7}{2}^+ 1^9$ F level is rather broad ($\Gamma = 85$ keV [11]) and has no other

obvious analog in ¹⁹Ne. The newly observed ¹⁹Ne level at $E_x = 7.420 \pm 0.014$ MeV is, therefore, most likely the mirror to the $J^{\pi} = \frac{7}{2}^{+19}$ F level at 7.56 MeV. In addition to the best fit calculation, we also show in

In addition to the best fit calculation, we also show in fig. 1 the calculated excitation function using the ¹⁹Ne resonance parameters from ref. [5]. That calculation includes contributions from 13 resonances, most of which produce only minor perturbations to the excitation function. The one glaring discrepancy is for the expected contribution from the $\frac{5}{2}^+$ level at $E_{\rm c.m.} = 1.09$ MeV ($E_x = 7.500$ MeV). This level was observed in ref. [10] to have $\Gamma_p/\Gamma_\alpha \simeq 5.25$ and a 1 σ upper limit of $\Gamma < 32$ keV. A width of 16 keV was adopted for this level in ref. [5], but clearly (as seen in fig. 1) the actual width is much smaller. This is not really surprising considering the width of the proposed analog level is only 0.16 keV [12]. Using the ratio of the proton- to the alpha-partial width measured in ref. [10], we can set an upper limit on the proton width of $\Gamma_p(7.500 \text{ MeV}) < 2.5 \text{ keV}$ at the 90% confidence level.

We have made updated calculations of the ¹⁸F + p reaction rates in ref. [7]. We find that the addition of the newly observed 7/2⁺ resonance increases the calculated ¹⁸F(p, α)¹⁵O rate by 16%, 63%, and 106% at T = 1, 2, and 3 GK, respectively. The calculated ¹⁸F(p, γ)¹⁹Ne reaction rate (using γ widths from ref. [5]) is increased by about ~ 7% over the 1–3 GK range. At temperatures below this, the rates are dominated by resonances at $E_{c.m.} = 330$ and 665 keV [5].

This research was sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725. This work was also supported in part by the U.S. DOE under Contract No. DE-FG02-96ER40955 with Tennessee Technological University and Contract No. DE-FG02-97ER41041 with the University of North Carolina at Chapel Hill.

References

- M. Hernanz, J. Gómez-Gomar, J. José, New Astron. Rev. 46, 559 (2002).
- A. Coc, M. Hernanz, J. José, J.-P. Thibaud, Astron. Astrophys. 357, 561 (2000).
- C. Iliadis, A. Champagne, J. José, S. Starrfield, P. Tupper, Astrophys. J., Suppl. Ser. 142, 105 (2002).
- A.E. Champagne, M. Wiescher, Annu. Rev. Nucl. Part. Sci. 42, 39 (1992).
- N.-C. Shu, D.W. Bardayan, J.C. Blackmon, Y.-S. Chen, R.L. Kozub, P.D. Parker, M.S. Smith, Chin. Phys. Lett. 20, 1470 (2003).
- A. Galindo-Uribarri *et al.*, Nucl. Instrum. Methods Phys. Res. B **172**, 647 (2000).
- 7. D.W. Bardayan et al., Phys. Rev. C 70, 015804 (2004).
- 8. D.W. Bardayan et al., Phys. Rev. C 63, 065802 (2001).
- R.O. Nelson, E.G. Bilpuch, G.E. Mitchell, Nucl. Instrum. Methods Phys. Res. A 236, 128 (1985).
- S. Utku *et al.*, Phys. Rev. C 57 2731 (1998); 58, 1354(E) (1998).
- 11. T. Mo, H.R. Weller, Nucl. Phys. A **198**, 153 (1972).
- D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 595, 1 (1995).